Isotropization in Bianchi Type VII_h Vacuum Cosmology

Enrique Guzmán¹

Received July 23, 1991

We find the most general solution of Einstein's equations for the Bianchi type VII_h vacuum case in the Brans-Dicke theory. For w > 500 the universe will become isotropic for any amount of initial anisotropy; for this model there is no inflationary expansion.

1. INTRODUCTION

The purpose of this paper is to give the most general solution for the Bianchi type VII_h vacuum case with total anisotropy $(R_1 \neq R_2 \neq R_3)$ in the Brans-Dicke theory (BDT). It is shown that for a large value of the BDT coupling parameter w [present limits based on time-delay experiments require $w \ge 500$ (Reasenberg *et al.*, 1979)] the universe will become isotropic for any amount of the initial anisotropy for the h = 1 case. For this model we do not have inflationary behavior.

2. BIANCHI TYPE VII₄ FIELD EQUATIONS

The field equations for the Bianchi type VII_h vacuum model in which the metric is diagonalized (Lorentz-Petzold, 1984) are given by

$$\dot{H}_{1} + 3HH_{1} + \frac{1}{2R_{3}^{2}} \left[\left(\frac{R_{1}}{R_{2}} \right)^{2} - \left(\frac{R_{2}}{R_{1}} \right)^{2} \right] + H_{1} (\ln \Phi)^{*} \\ - \frac{1}{2} \left[\left(\frac{R_{1}}{R_{2}} \right)^{2} - \left(\frac{R_{2}}{R_{1}} \right)^{2} \right] \dot{\Omega}^{2} - 2 \left(\frac{h}{R_{3}} \right)^{2} = 0$$
(1)

¹Universidad Autónoma Metropolitana, México, D.F., and Astronomisches Institut, Ruhr-Universität, Bochum, Germany.

435

0020-7748/94/0200-0435\$07.00/0 © 1994 Plenum Publishing Corporation

Guzmán

$$\dot{H}_{2} + 3HH_{2} - \frac{1}{2R_{3}^{2}} \left[\left(\frac{R_{1}}{R_{2}} \right)^{2} - \left(\frac{R_{2}}{R_{1}} \right)^{2} \right] + H_{2}(\ln \Phi)^{*} + \frac{1}{2} \left[\left(\frac{R_{1}}{R_{2}} \right)^{2} - \left(\frac{R_{2}}{R_{1}} \right)^{2} \right] \dot{\Omega}^{2} - 2 \left(\frac{h}{R_{3}} \right)^{2} = 0$$
(2)

$$\dot{H}_3 + 3HH_3 - \frac{1}{2R_3^2} \left(\frac{R_1}{R_2} - \frac{R_2}{R_1}\right)^2 + H_3(\ln \Phi) \cdot - 2\left(\frac{h}{R_3}\right)^2 = 0$$
 (3)

$$H_{1}H_{2} + H_{1}H_{3} + H_{2}H_{3} + 3H(\ln \Phi)^{*}$$

$$= \frac{1}{4R^{6}} \{ 12(hR_{1}R_{2})^{2} + (R_{1}^{2} - R_{2}^{2})^{2} [1 + (R_{3}\dot{\Omega})^{2}] + \frac{w}{2} (\ln \Phi)^{*2}$$
(4)

$$\dot{\Omega} = 2h(2H_3 - H_1 - H_2) \left(\frac{R_1}{R_2} - \frac{R_2}{R_1}\right)^{-2}$$
(5)

$$(R^{3}\dot{\Phi})^{\bullet} = 0; \qquad (\cdot)^{\bullet} = \frac{d}{dt}$$
(6)

Here R_i (i = 1, 2, 3) are the scale factors, $R^3 = R_1 R_2 R_3$, $H_i = R_i / R_i$ are the Hubble parameters, $3H = \sum_{i=1}^{3} H_i$, $\Phi = \Phi(t)$ is the BDT scalar field, w is the coupling parameter of the BDT, $\Omega = \Omega(t)$ is the angle of rotation, and h is the family parameter of Bianchi type VII_h. By rescaling $d\Phi = R^{-3} dt$, one obtains equations (1)–(6) in the form

$$H_{1}' + \frac{H_{1}}{\Phi} + \frac{R_{1}^{2}R_{2}^{2}}{2} \left[\left(\frac{R_{1}}{R_{2}} \right)^{2} - \left(\frac{R_{2}}{R_{1}} \right)^{2} \right] - \frac{1}{2} \left[\left(\frac{R_{1}}{R_{2}} \right)^{2} - \left(\frac{R_{2}^{2}}{R_{1}} \right) \right] \Omega^{\prime 2} = 2h^{2}R_{1}^{2}R_{2}^{2}$$
(7)

$$H_{2}' + \frac{H_{2}}{\Phi} - \frac{R_{1}^{2}R_{2}^{2}}{2} \left[\left(\frac{R_{1}}{R_{2}} \right)^{2} - \left(\frac{R_{2}}{R_{1}} \right)^{2} \right] + \frac{1}{2} \left[\left(\frac{R_{1}}{R_{2}} \right)^{2} - \left(\frac{R_{2}}{R_{1}} \right)^{2} \right] \Omega^{2} = 2h^{2}R_{1}^{2}R_{2}^{2}$$
(8)

$$H'_{3} + \frac{H_{3}}{\Phi} - \frac{R_{1}^{2}R_{2}^{2}}{2} \left(\frac{R_{1}}{R_{2}} - \frac{R_{2}}{R_{1}}\right)^{2} = 2h^{2}R_{1}^{2}R_{2}^{2}$$
(9)

$$H_{1}H_{2} + H_{1}H_{3} + H_{2}H_{3} - \frac{w}{2\Phi^{2}} + \frac{1}{\Phi}(3H)$$
$$= \frac{1}{4} \left\{ 12(hR_{1}R_{2})^{2} + (R_{1}^{2} - R_{2}^{2}) \left[1 + \left(\frac{\Omega'}{R_{1}R_{2}}\right)^{2} \right] \right\}$$
(10)

$$\Omega' = 2h(2H_3 - H_1 - H_2) \left(\frac{R_1}{R_2} - \frac{R_2}{R_1}\right)^{-2}$$
(11)

where $(\cdot)' = d/d\Phi$ and now $H_i = R'_i/R_i$. From equations (7) and (8)

Isotropization in Bianchi Type VII_A Vacuum Cosmology

we have

$$\Phi[\Phi(\ln \Phi^2 R_1^2 R_2^2)']' = 4h^2 R_1^2 R_2^2 \Phi^2$$
(12)

By introducing the new variables $r^2 = R_1^2 R_2^2 \Phi^2$ and $d\eta = d\Phi/\Phi$, we find for equation (12)

$$(\ln r)^{**} = 4h^2 r^2 \tag{13}$$

where $(\cdot)^* = d/d\eta$. Equation (13) can be integrated and we obtain

$$r = \frac{4CB^2}{\Phi^{-\sqrt{c}} - 16h^2 C \Phi^{\sqrt{c}}}; \qquad C, B > 0$$
(14)

where c and B are constants of integration. From equations (7) and (8),

$$(H_1 - H_2)' + \frac{1}{\Phi}(H_1 - H_2) = -\left(1 - \frac{\Omega'^2}{R_1^2 R_2^2}\right) R_1^2 R_2^2 \left[\left(\frac{R_1}{R_2}\right)^2 - \left(\frac{R_2}{R_1}\right)^2\right]$$
(15)

Using the Lukash assumption (Lukash, 1974; Jantzen, 1980), $\Omega'^2 = R_1^2 R_2^2$, we can easily integrate equation (15),

$$\frac{R_1}{R_2} = \Phi^k \tag{16}$$

where k is a constant. From the definition of $r^2 = R_1^2 R_2^2 \Phi^2$ and (16) we obtain

$$R_1 = \frac{\sqrt{B}}{2h\Phi^{-(k+1)/2}(\Phi^{2k} - \Phi^{-2k})^{1/2}}$$
(17)

$$R_2 = \frac{\sqrt{B}}{2h\Phi^{(k+1)/2}(\Phi^{2k} - \Phi^{-2k})}$$
(18)

By substitution of equations (17) and (18) into (9) and using (11), finally we obtain the other scale factor R_3 ,

$$R_{3} = \frac{\sqrt{B} (\Phi^{k} + \Phi^{-k})^{B/16h^{3}k}}{2h\Phi^{1/2}(\Phi^{2k} - \Phi^{-2k})^{1/2}}$$
(19)

with the corresponding Hubble parameters

$$H_1 = -\frac{1-k}{\Phi} - \frac{k}{\Phi} \frac{\Phi^{2k} + \Phi^{-2k}}{\Phi^{2k} - \Phi^{-2k}}$$
(20)

$$H_2 = -\frac{k+1}{\Phi} - \frac{k}{\Phi} \frac{\Phi^{2k} + \Phi^{-2k}}{\Phi^{2k} - \Phi^{-2k}}$$
(21)

$$H_{3} = -\frac{1}{2\Phi} - \frac{k}{\Phi} \frac{\Phi^{2k} + \Phi^{-2k}}{\Phi^{2k} - \Phi^{-2k}} + \frac{B}{16h^{3}\Phi} \frac{\Phi^{k} - \Phi^{-k}}{\Phi^{k} + \Phi^{-k}}$$
(22)

By substitution of (17)-(19) into (10), we obtain the constants k and B,

$$k = \frac{B}{8h}; \qquad k = \left(\frac{2w+3}{11-4/h^2}\right)^{1/2}$$
 (23)

3. DISCUSSION AND CONCLUSIONS

The BDT is consistent with the local observations in the solar system as long as the coupling parameter w is about equal to or greater than 500 (Reasenberg *et al.*, 1979); from equation (23) for w > 500 for real constants we have that B = 96, h = 1, and k = 12. Making a plot for R_1 , R_2 , and R_3 [equations (17)-(19)] versus the "temporal" parameter Φ (Fig. 1), we can see that we have physical solutions for $\Phi > 1$ ($\Phi < 1$ implies that R_i becomes imaginary), that is, $R_i \to +\infty$; there is no singularity, the universe is infinite in size, and for $\Phi \to \infty$ the scale factors become equal to 0, that is, we have the final singularity.

For the Hubble parameters H_1 , H_2 , and H_3 [equations (20)–(22) and Fig. 2), we see that for any amount of initial anisotropy, that is, $k \neq 0$, the universe tends to be isotropized very fast ($H_1 = H_2 = H_3$ when $\Phi \rightarrow \infty$).

This model does not have inflationary behavior, because for short values of Φ ($\Phi < 1$) the scale factors are imaginary. For $\Phi \rightarrow 1$, $R_1 = R_2 = R_3$ (Fig. 1), that is, isotropy.

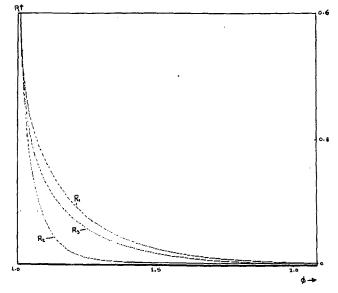


Fig. 1. "Time" dependence of the scale factors R_1 , R_2 , and R_3 versus the scalar field Φ . R_1 , R_2 , and R_3 are in units of $(B/2)^{1/2}$ (B = 96, h = 1, k = 12, w > 500).

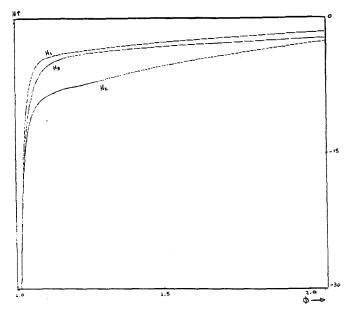


Fig. 2. "Time" dependence of the Hubble parameters H_1 , H_2 , and H_3 versus Φ . For $\Phi > 2$ the universe tends to be isotropized, $H_1 \cong H_2 \cong H_3$ (H_3 is not in the same scale).

In conclusion, we have found the general vacuum solution for the Bianchi type VII_h case in BDT, and showed that for w > 500 the universe tends to be isotropized for the case of a Bianchi type VII_h perfect fluid solution analyzed by us (Guzmán, 1989). In future papers we will discuss other Bianchi models in BDT.

ACKNOWLEDGMENTS

This work has been supported by CONACYT, México, D.F.

REFERENCES

Guzmán, E. (1989). Astrophysics and Space Science, 152, 171.
Jantzen, R. T. (1980). Annals of Physics, 127, 302.
Lorentz-Petzold, D. (1984). Astrophysics and Space Science, 106, 409.
Lukash, V. N. (1974). JETP Letters, 19, 265.
Reasenberg, R. D., et al. (1979). Astrophysical Journal, 234, L219.